These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Long-term recovery of PCB-contaminated sediments at the Lake Hartwell superfund site: PCB dechlorination. 2. Rates and extent. Author: Magar VS, Brenner RC, Johnson GW, Quensen JF. Journal: Environ Sci Technol; 2005 May 15; 39(10):3548-54. PubMed ID: 15952357. Abstract: This paper reports on extensive polychlorinated biphenyl (PCB) dechlorination measured in Lake Hartwell (Pickens County, SC) sediments. Vertical sediment cores were collected from 18 locations in Lake Hartwell (Pickens County, SC) and analyzed in 5-cm increments for PCB congeners. The preferential loss of meta and para chlorines with sediment depth demonstrated that PCBs in the sediments underwent reductive dechlorination after burial. Notably, ortho chlorines were highly conserved for more than 5 decades; since the first appearance of PCBs, ca. 1950-1955. These dechlorination characteristics resulted in the accumulation of lower chlorinated congeners dominated by ortho chlorine substituents. Dechlorination rates were determined by plotting the numbers of meta plus para chlorines per biphenyl molecule (mol of chlorine/mol of PCB) with sediment age. Regression analyses showed linear correlations between meta plus para chlorine concentrations with time. The average dechlorination rate was 0.094 +/- 0.063 mol of Cl/mol of PCB/yr. The rates measured using the 2001 cores were approximately twice those measured using the 2000 cores, most likely because the 2001 cores were collected only at transects O, L, and I, which had the highest rates measured in 2000. An inverse of the dechlorination rates indicated that 16.4 +/- 11.6 yr was required per meta plus para chlorine removal (ranging from 4.3 to 43.5 yr per chlorine removal). The rates determined from this study were 1-2 orders of magnitude lower than rates reported from laboratory microcosm studies using Hudson River and St. Lawrence River sediments, suggesting that dechlorination rates reported for laboratory experiments are much higher than those occurring in situ.[Abstract] [Full Text] [Related] [New Search]