These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pathologic changes of presbycusis begin in secondary processes and spread to primary processes of strial marginal cells.
    Author: Spicer SS, Schulte BA.
    Journal: Hear Res; 2005 Jul; 205(1-2):225-40. PubMed ID: 15953531.
    Abstract:
    Strial atrophy underlying age-related hearing loss was investigated by ultrastructural comparisons in young and senescent gerbils. In young animals strial marginal cells (MCs) projected primary processes which gave rise to and were connected by numerous ultrathin secondary processes. In 30-36-month-old gerbils, the MC secondary processes degenerated into lamellar or amorphous profiles as the first manifestation of strial atrophy. Some short primary processes shorn of projecting and connecting secondaries coalesced to form mitochondria-filled lobules. Strial involution appeared to progress with transformation of the degenerating processes and lobules into permanent residues of laminated amorphous substance. A second apparently unique form of degeneration was observed in which areas filled with homogeneous granular material replaced the processes that comprise the basal half of the normal MC. An abrupt line of transition separated this structureless degradation product below from the viable upper half of the MC. The terminally involuted stria consisted of MC bodies lining scala media, along with vestigial remnants of MC processes, nearby normal appearing intermediate cells (ICs) and unaltered basal cells. The only age-related change in ICs involved incorporation of melanosomes into very large, matrix-filled lysosomes. A profile of one MC in apparent necrosis provided evidence for an infrequent occurrence of MC death. These data support a progression of pathologic changes beginning with the demise of MC secondary processes and ending with ablation of secondary and primary processes. The initial injury apparently occurs as a result of oxidative self-damage to mitochondria in the MCs primary processes, leading to insufficient ATP for the Na,K-ATPase of the secondary processes. The reduced ATP level may cause cytotoxic alteration of the cytosolic Na(+)/K(+) ratio first in MC secondary processes and later in the primaries, with consequent degeneration of these structures.
    [Abstract] [Full Text] [Related] [New Search]