These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Xanthine oxidase inhibition ameliorates cardiovascular dysfunction in dogs with pacing-induced heart failure. Author: Amado LC, Saliaris AP, Raju SV, Lehrke S, St John M, Xie J, Stewart G, Fitton T, Minhas KM, Brawn J, Hare JM. Journal: J Mol Cell Cardiol; 2005 Sep; 39(3):531-6. PubMed ID: 15963530. Abstract: We hypothesized that chronic xanthine oxidase inhibition (XOI) would have favorable effects on both ventricular and vascular performance in evolving heart failure (HF), thereby preserving ventricular-vascular coupling. In HF, XOI reduces oxidative stress and improves both vascular and myocardial function. Dogs were randomized to receive either allopurinol (100 mg/day p.o.) or placebo following surgical instrumentation for chronic measurement of left-ventricular pressure and dimension and during induction of HF by rapid pacing. In the placebo group (n = 8), HF was characterized by increased LV end-diastolic pressure (LVEDP, 10.2 +/- 5.5 and 29.8 +/- 3.9 mmHg, before and after HF, respectively, P < 0.05), end-diastolic dimension (LVEDD, from 29.5 +/- 3.2 to 34.3 +/- 3.2 mm, P < 0.001), and afterload (arterial elastance, Ea, from 17.9 +/- 1.2 to 42.6 +/- 7.9 mmHg/mm, P < 0.05), and reduced contractility (End-systolic ventricular elastance, Ees, from 10.8 +/- 1.3 to 5.6 +/- 2.3 mmHg/mm, P < 0.05). Thus, ventricular-vascular coupling (Ees/Ea ratio) fell 57.6+/-9% (0.61 +/- 0.1 to 0.16 +/- 0.1, P < 0.05). Allopurinol (n = 9) profoundly attenuated both the Ea increase (from 22.3 +/- 3 to 25.6 +/- 4.6 mmHg/mm, P = NS) and the fall in Ees (from 11.8+/-1.1 to 11.7+/-1, P = NS), thereby preserving the Ees/Ea ratio (from 0.58 +/- 0.1 to 0.56 +/- 0.1, P < 0.001 vs. placebo). Allopurinol did not affect the increase in preload (LVEDP and LVEDD). XO cardiac mRNA and protein were similarly upregulated approximately fourfold in both groups. Allopurinol ameliorates increases in afterload and reductions in myocardial contractility during evolving HF, thereby preserving ventricular-vascular coupling. These results demonstrate a unique and potent hemodynamic profile of XOI, thereby providing further rationale for developing XOIs as a novel HF therapy.[Abstract] [Full Text] [Related] [New Search]