These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Roles of Sca-1 in hematopoietic stem/progenitor cell function.
    Author: Bradfute SB, Graubert TA, Goodell MA.
    Journal: Exp Hematol; 2005 Jul; 33(7):836-43. PubMed ID: 15963860.
    Abstract:
    OBJECTIVE: This study was focused on studying the role of Sca-1 (Ly-6 A/E) in hematopoietic stem/progenitor cell self-renewal, activation, and lineage fate. MATERIALS AND METHODS: Sca-1(-/-) bone marrow cells were transplanted into wild-type recipient mice and assessed for self-renewal activity and lineage choice. In addition, Sca-1(-/-) mice were injected with 5-FU and Lin(-) cells were analyzed. Sca-1 was also overexpressed in mouse and human stem/progenitor cells to assess the effect of Sca-1 overexpression on stem/progenitor differentiation and proliferation. RESULTS: Self-renewal of Sca-1(-/-) HSC appeared to be normal, but lineage skewing was observed in B cells, NK cells, and granulocytes/macrophages derived from Sca-1(-/-) HSC. There was also a decrease in c-kit expression on activated Sca-1(-/-) progenitor cells. Overexpression of mouse Sca-1 decreased the in vitro myeloid activity of both mouse and human progenitors. CONCLUSION: These data indicate that Sca-1 plays a role in hematopoietic progenitor/stem cell lineage fate and c-kit expression. In addition, mouse Sca-1 overexpression affects human as well as mouse stem/progenitor cell activity, suggesting the possibility of a functional human Sca-1 homologue.
    [Abstract] [Full Text] [Related] [New Search]