These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deoxycholyltaurine-induced vasodilation of rodent aorta is nitric oxide- and muscarinic M(3) receptor-dependent.
    Author: Khurana S, Yamada M, Wess J, Kennedy RH, Raufman JP.
    Journal: Eur J Pharmacol; 2005 Jul 04; 517(1-2):103-10. PubMed ID: 15964566.
    Abstract:
    Emerging evidence indicates that some secondary bile acids interact functionally with muscarinic cholinergic receptors. Using thoracic aortic rings prepared from rats and mice, we examined the mechanism of deoxycholyltaurine-induced vasorelaxation. Increasing concentrations of both acetylcholine (1 nM to 0.1 mM) and deoxycholyltaurine (0.1 microM to 1 mM) stimulated relaxation of phenylephrine-constricted rings prepared from rat thoracic aortae. These effects were reduced by endothelial denudation and by treatment with an inhibitor of nitric oxide formation and with a synthetic acetylcholine:bile acid hybrid that acts as a muscarinic receptor antagonist. Likewise, both acetylcholine (1 nM to 0.1 mM) and deoxycholyltaurine (0.1 microM to 0.1 mM) stimulated relaxation of phenylephrine-constricted rings prepared from mouse thoracic aortae. These effects were reduced by endothelial denudation, addition of an inhibitor of nitric oxide formation, and by muscarinic M(3) receptor knockout. We conclude that the systemic vasodilatory actions of deoxycholyltaurine are mediated in part by a nitric oxide-, muscarinic M(3) receptor-dependent mechanism. In advanced liver disease, interaction of serum bile acids with endothelial muscarinic receptors may explain nitric oxide overproduction in the systemic circulation and resulting peripheral arterial vasodilation.
    [Abstract] [Full Text] [Related] [New Search]