These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cadmium toxicity toward caspase-independent apoptosis through the mitochondria-calcium pathway in mtDNA-depleted cells. Author: Shih YL, Lin CJ, Hsu SW, Wang SH, Chen WL, Lee MT, Wei YH, Shih CM. Journal: Ann N Y Acad Sci; 2005 May; 1042():497-505. PubMed ID: 15965096. Abstract: Mitochondria are believed to be integrators and coordinators of programmed cell death in addition to their respiratory function. Using mitochondrial DNA (mtDNA)-depleted osteosarcoma cells (rho0 cells) as a cell model, we investigated the apoptogenic signaling pathway of cadmium (Cd) under a condition of mitochondrial dysfunction. The apoptotic percentage was determined to be around 58.0% after a 24-h exposure to 25 microM Cd using flow cytometry staining with propidium iodine (PI). Pretreatment with Z-VAD-fmk, a broad-spectrum caspase inhibitor, failed to prevent apoptosis following Cd exposure. Moreover, Cd was unable to activate caspase 3 using DEVD-AFC as a substrate, indicating that Cd induced a caspase-independent apoptotic pathway in rho0 cells. JC-1 staining demonstrated that mitochondrial membrane depolarization was a prelude to apoptosis. On the other hand, the intracellular calcium concentration increased 12.5-fold after a 2-h exposure to Cd. More importantly, the apoptogenic activity of Cd was almost abolished by ruthenium red, a mitochondrial calcium uniporter blocker. This led us to conclude that mtDNA-depleted cells provide an alternative pathway for Cd to conduct caspase-independent apoptosis through a mitochondria-calcium mechanism.[Abstract] [Full Text] [Related] [New Search]