These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binding properties of nine 4-diphenyl-acetoxy-N-methyl-piperidine (4-DAMP) analogues to M1, M2, M3 and putative M4 muscarinic receptor subtypes.
    Author: Waelbroeck M, Camus J, Tastenoy M, Christophe J.
    Journal: Br J Pharmacol; 1992 Jan; 105(1):97-102. PubMed ID: 1596694.
    Abstract:
    1. We compared the binding properties of 4-diphenyl-acetoxy-N-methyl-piperidine methiodide (4-DAMP) and nine analogues of this compound on muscarinic receptors of human neuroblastoma NB-OK1 cells (M1 subtype), rat heart (M2 subtype), rat pancreas (M3 subtype) and to the putative M4 subtype in striatum. 2. The requirements for high affinity binding were somewhat different for the four receptor subtypes. In general, the requirements of M3 receptors were more stringent than for M1, M2 or putative M4 receptors. 3. The abilities of the compounds to discriminate muscarinic receptor subtypes were not correlated with their affinities at any subtype. 4. The temperature-dependence of binding of 4-DAMP analogues to M2 receptors varied with the drug structure. In particular, the increased affinity of the alpha-methyl derivative of 4-DAMP could be ascribed to van der Waals interactions. 5. The affinities of most 4-DAMP analogues for M2 and M3 receptors were similar to their pharmacological potencies on atrial and ileum preparations, respectively. 6. At concentrations above 1 microM, all 4-DAMP analogues as well as atropine, reduced the [3H]-N-methyl scopolamine ([3H]-NMS) dissociation rate from cardiac muscarinic receptors, with no obvious structure-activity relationship.
    [Abstract] [Full Text] [Related] [New Search]