These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro selection of resistance in Pseudomonas aeruginosa and Acinetobacter spp. by levofloxacin and ciprofloxacin alone and in combination with beta-lactams and amikacin. Author: Drago L, De Vecchi E, Nicola L, Tocalli L, Gismondo MR. Journal: J Antimicrob Chemother; 2005 Aug; 56(2):353-9. PubMed ID: 15967767. Abstract: OBJECTIVES: The aim of this study was to evaluate the ability of levofloxacin and ciprofloxacin alone and in combination with either ceftazidime, cefepime, imipenem, piperacillin-tazobactam or amikacin to select for antibiotic-resistant mutants of Pseudomonas aeruginosa and Acinetobacter spp. METHODS: Clinical strains of P. aeruginosa (n = 5) and Acinetobacter spp. (n = 5) susceptible to all the drugs used in the study were assayed. Development of resistance was determined by multi-step and single-step methodologies. For multi-step studies, MICs were determined after five serial passages on antibiotic-gradient plates containing each antibiotic alone or in combination with levofloxacin or ciprofloxacin. Acquisition of resistance was defined as an increase of >or=4-fold from the starting MIC. In single-step studies, the frequency of spontaneous mutations was calculated after a passage on plates containing antibiotics alone and in combinations at concentrations equal to the highest NCCLS breakpoints. RESULTS: Serial passages on medium containing single antibiotics resulted in increased MICs for each antibiotic; MIC increases were limited by antibiotics in combination. A decrease in the number of strains with MICs above the NCCLS breakpoints occurred when fluoroquinolones were combined with a second antibiotic for both P. aeruginosa and Acinetobacter spp. isolates. Frequencies of mutation were higher for antibiotics alone than for combinations. CONCLUSIONS: Use of combinations of fluoroquinolones with beta-lactams and amikacin reduces the risk for in vitro selection of resistant P. aeruginosa and Acinetobacter spp.[Abstract] [Full Text] [Related] [New Search]