These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of magnesium on the structure of biological apatites.
    Author: Bigi A, Foresti E, Gregorini R, Ripamonti A, Roveri N, Shah JS.
    Journal: Calcif Tissue Int; 1992 May; 50(5):439-44. PubMed ID: 1596779.
    Abstract:
    X-ray diffraction, infrared absorption spectroscopy, and chemical investigation have been carried out on deproteinated samples of turkey leg tendon at different degrees of calcification. The inorganic phase consists of poorly crystalline B carbonated apatite. On increasing calcification, the apatite crystal size, as well as its thermal stability, increase while the relative magnesium content is reduced. On the other hand, synchrotron X-ray diffraction data clearly indicate that apatite lattice parameters do not change as the crystals get larger. At the last stage of calcification the crystal size, chemical composition, and thermal conversion of the apatite crystallites approximate those of bone samples, which have been examined for comparison. The results provide a quantitative relationship between relative magnesium content and extent of apatite conversion into B-tricalcium phosphate by heat treatment. Furthermore, they suggest that the smaller crystallites laid down inside the gap region of the collagen fibrils are richer in magnesium than the longer ones that fill the space between collagen fibrils.
    [Abstract] [Full Text] [Related] [New Search]