These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reconstitution of pyruvate dehydrogenase multienzyme complexes based on chimeric core structures from Azotobacter vinelandii and Escherichia coli.
    Author: Schulze E, Westphal AH, Veeger C, de Kok A.
    Journal: Eur J Biochem; 1992 Jun 01; 206(2):427-35. PubMed ID: 1597183.
    Abstract:
    Two unique restriction sites were introduced by site-directed mutagenesis at identical positions in the DNA encoding the dihydrolipoyltransacetylase (E2p) components of the pyruvate dehydrogenase complex from Azotobacter vinelandii and from Escherichia coli. In this manner each DNA chain could be cut into three parts, coding for the lipoyl domain, which consists of three lipoyl subdomains, the binding domain and the core-forming catalytic domain, respectively. Chimeric E2p components were constructed by exchanging the three domains between E2p from A. vinelandii and E. coli on gene level. The six chimeric E2p proteins were expressed and purified from E. coli TG2. All chimeras were catalytically active, 24-subunit E2p proteins. Interactions of the peripheral components E1p and E3 with the wild-type enzymes from A. vinelandii and E. coli and with the chimeric proteins were studied by gel-filtration experiments, analytical ultracentrifugation and reconstitution of the overall activity of the complex. A. vinelandii E3 interacts only with those chimeras that contain the A. vinelandii binding domain, whereas E. coli E3 interacts with all chimeras. Exchange of the lipoyl or catalytic domain did not influence the binding properties of E3. Recognition of E1p depends on the origin of both the binding domain and the catalytic domain. E. coli E1p interacts strongly with those chimeras in which both the binding domain and the catalytic domain were derived from E. coli E2p and weakly with chimeras that contained either the binding domain or the catalytic domain from E. coli E2p. No binding of E. coli E1p was observed when both domains were of A. vinelandii origin. A. vinelandii E1p recognizes E2p from A. vinelandii and E. coli, but strong interaction required that the binding and catalytic domain were of the same origin. Exchange of lipoyl domains had no effect on the binding properties of the E1p component. These observations confirm previous conclusions, based on site-directed mutagenesis of A. vinelandii E2p [Schulze, E., Westphal, A. H., Boumans, H., and de Kok, A. (1991) Eur. J. Biochem. 202, 841-848], that the binding site for E1p consists of amino acid residues derived from both the binding and the catalytic domain and extend these conclusions to E. coli E2p. Dissociation of the 24 subunit E2p core was only detected when the chimeric E2p proteins contained the catalytic domain from A. vinelandii E2p. Dissociation depends on the binding of peripheral components to the E1p-binding sites, pointing to differences in the inter-trimer contacts between the E2p proteins from both species.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]