These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Raman and infrared spectroscopic study of the uranyl silicates--weeksite, soddyite and haiweeite: part 2.
    Author: Frost RL, Cejka J, Weier ML, Martens W.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2006 Feb; 63(2):305-12. PubMed ID: 15975846.
    Abstract:
    Raman spectroscopy has been used to study the molecular structure of a series of selected uranyl silicate minerals including weeksite K2[(UO2)2(Si5O13)].H2O, soddyite [(UO2)2SiO4.2H2O] and haiweeite Ca[(UO2)2(Si5O12(OH)2](H2O)3 with UO2(2+)/SiO2 molar ratio 2:1 or 2:5. Raman spectra clearly show well resolved bands in the 750-800 cm(-1) region and in the 950-1000 cm(-1) region assigned to the nu1 modes of the (UO2)2+ units and to the (SiO4)4- tetrahedra. Soddyite is characterized by Raman bands at 828.0, 808.6 and 801.8 cm(-1), 909.6 and 898.0 cm(-1), and 268.2, 257.8 and 246.9 cm(-1), attributed to the nu1, nu3, and nu2 (delta) (UO2)2+, respectively. Coincidences of the nu1 (UO2)2+ and the nu1 (SiO4)4- is expected. Bands at 1082.2, 1071.2, 1036.3, 995.1 and 966.3 cm(-1) are attributed to the nu3 (SiO4)4-. Sets of Raman bands in the 200-300 cm(-1) region are assigned to nu2 (delta) (UO2)2+ and UO ligand vibrations. Multiple bands indicate the non-equivalence of the UO bonds and the lifting of the degeneracy of nu2 (delta) (UO2)2+ vibrations. The (SiO4)4- tetrahedral are characterized by bands in the 470-550 cm(-1) and in the 390-420 cm(-1) region. These bands are attributed to the nu4 and nu2 (SiO4)4- bending modes. The minerals show characteristic OH stretching bands in the 2900-3500 and 3600-3700 cm(-1).
    [Abstract] [Full Text] [Related] [New Search]