These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of experimental muscle pain on the amplitude and velocity sensitivity of jaw closing muscle spindle afferents.
    Author: Masri R, Ro JY, Capra N.
    Journal: Brain Res; 2005 Jul 19; 1050(1-2):138-47. PubMed ID: 15982645.
    Abstract:
    The effect of experimental muscle pain on the amplitude and velocity sensitivity of muscle spindle primary afferent neurons in the trigeminal mesencephalic nucleus (Vmes) was examined. Extracellular recordings were made from 45 neurons designated as spindle primary- or secondary-like on the basis of their response to ramp-and-hold jaw movements. Velocity sensitivity was assessed in spindle primary-like afferents by calculating the mean dynamic index of each unit in response to three different velocities of jaw opening before and after intramuscular injection with hypertonic saline (HS, 5%, 100 microl). The amplitude sensitivity of all jaw muscle spindle afferents was assessed by calculating the mean firing rate of each unit in response to three different amplitudes of jaw openings during both the open and hold phases of the movement and with best-fit lines obtained, using linear regression analysis, before and after HS injection. The variance of the two regression lines obtained for each unit before and after the injection was compared using the coincidence test, and changes in intercept and slope were determined. Seventy-five percent of the primary-like units and 80% of the secondary-like units presented with changes in static behavior after HS injection. Thirty-six percent of the primary-like units showed changes in dynamic behavior. Injection of isotonic saline (control) did not alter the responses of the spindle afferent to jaw opening. Thus, our results demonstrate that the predominant effect of noxious stimulation was a shift in the amplitude sensitivity of both spindle primary-like and secondary-like afferents and, to a lesser extent, the velocity sensitivity of the spindle primary-like unit. In accordance with earlier studies in the cat hindlimb and neck muscles, these results suggest that the activation of masseter muscle nociceptor alters spindle afferent responses to stretch acting primarily through static gamma motor neurons.
    [Abstract] [Full Text] [Related] [New Search]