These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Secondary pneumatization of the maxillary sinus in callitrichid primates: insights from immunohistochemistry and bone cell distribution.
    Author: Smith TD, Rossie JB, Cooper GM, Mooney MP, Siegel MI.
    Journal: Anat Rec A Discov Mol Cell Evol Biol; 2005 Aug; 285(2):677-89. PubMed ID: 15983987.
    Abstract:
    The paranasal sinuses remain elusive both in terms of function and in the proximate mechanism of their development. The present study sought to describe the maxillary sinuses (MSs) in three species of callitrichid primates at birth, a time when secondary pneumatization occurs rapidly in humans. The MSs were examined in serially sectioned and stained slides from the heads of two Callithrix jacchus, one Leontopithecus rosalia, and two Saguinus geoffroyi. Specimens were examined microscopically regarding the distribution of osteoclasts and osteoblasts along the osseous boundaries of the MS and other parts of the maxillary bone. Selected sections were immunohistochemically evaluated for the distribution of osteopontin (OPN), which facilitates osteoclast binding. Taken together, OPN immunoreactivity and bone cell distribution suggested trends of bone resorption/deposition that were consistent among species for the superior (roof) and inferior (floor) boundaries of the MS. Expansion at the roof and floor of the MS appeared to correspond to overall vertical midfacial growth in callitrichids. Much more variability was noted for the lateral (alveolar) and medial (nasal walls) of the MS. Unlike the other species, the nasal wall of Saguinus was static and mostly composed of inferior portions of the nasal capsule that were undergoing endochondral ossification. The variation seen in the alveolar walls may relate to the presence or absence of adjacent structures, although it was noted that adjacency of deciduous molars influenced medial drift of the alveolar wall in Saguinus but not Leontopithecus. The results of this study are largely consistent with the "structural" or "architectural" hypothesis of sinus formation with respect to vertical MS enlargement, and the variable cellular/OPN distribution found along the nasal and alveolar walls was evocative of Witmer's (J Vert Paleontol 1997;17:1-73) epithelial hypothesis in revealing that most expansion occurred in regions unopposed by adjacent structures.
    [Abstract] [Full Text] [Related] [New Search]