These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lessons from the design of a novel atomic potential for protein folding. Author: Chen WW, Shakhnovich EI. Journal: Protein Sci; 2005 Jul; 14(7):1741-52. PubMed ID: 15987903. Abstract: We investigate all-atom potentials of mean force for estimating free energies in protein folding and fold recognition. We search through the space potentials and design novel atomic potentials with a random mixing approximation and a contact-correlated Gaussian approximation of decoy states. We show that the two derived potentials are highly correlated, supporting the use of the random energy model as an accurate statistical description of protein conformational states. The novel atomic potentials perform well in a Z-score and fold decoy recognition test. Furthermore, the designed atomic potential performs slightly and significantly better than atomic potentials derived under a quasi-chemical assumption. While accounting for connectivity correlations between atom types does not improve the performance of the designed potential, we show these correlations lead to ambiguities in the distribution of energetic contributions for atoms on the same residue. Within the confines of the model then, many potentials may exist which stabilize all native folds in subtly different ways. Comparison of different protein conformations under the various atomic potentials reveals both a remarkable degree of correspondence in the estimated free energies and a remarkable degree of correspondence in the identity of the contacts types that make the dominant contributions to the estimated free energies. This consistency may be interpreted as a sign that the design procedure is extracting physically meaningful quantities.[Abstract] [Full Text] [Related] [New Search]