These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Significant tumor regression induced by microencapsulation of recombinant tumor cells secreting fusion protein.
    Author: Shi M, Hao S, Quereshi M, Guo X, Zheng C, Xiang J.
    Journal: Cancer Biother Radiopharm; 2005 Jun; 20(3):260-6. PubMed ID: 15989471.
    Abstract:
    Implantation of microencapsulated engineered cells secreting molecules with antineoplastic properties into tumors is a novel approach to cancer gene therapy. In this study, we constructed an engineered tumor cell line, VkCk/RM4-TNF-alpha, which secreted RM4/TNF-alpha fusion protein containing the chimeric antitumor antibody, F(ab')2 (RM4), recognizing the tumor antigen TAG72, as well as the TNF-alpha moiety. The engineered cells were encapsulated into microencapsules. The RM4/TNF-alpha fusion protein secreted by encapsulated VkCk/RM4-TNF-alpha cells could be diffused through the microencapsule membrane into the supernatant and exert a cytotoxic effect on L929 cells in vitro. The antigen-specific binding-reactivity of RM4/TNF-alpha for the TAG72 antigen was confirmed by immunohistochemical staining of rat LMCR tumor cells which expressed TAG72 antigen. Implantation of microencapsules containing VkCk/RM4-TNF-alpha cells into LMCR tumors in rats induced tumor regression as a result of tumor necrosis formation. Taken together, these data suggest that microencapsulation of recombinant tumor cells secreting antibody/cytokine fusion protein might be an alternative approach in the treatment of cancers.
    [Abstract] [Full Text] [Related] [New Search]