These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Investigation of evaporation and biodegradation of fuel spills in Antarctica. I. A chemical approach using GC-FID. Author: Snape I, Harvey PM, Ferguson SH, Rayner JL, Revill AT. Journal: Chemosphere; 2005 Dec; 61(10):1485-94. PubMed ID: 15990148. Abstract: Little effort has been devoted to differentiating between hydrocarbon losses through evaporation and biodegradation in treatability studies of fuel-contaminated Antarctic soils. When natural attenuation is being considered as a treatment option, it is important to be able to identify the mechanism of hydrocarbon loss and demonstrate that rates of degradation are sufficient to prevent off-site migration. Similarly, where complex thermally enhanced bioremediation schemes involve nutrient addition, water management, air stripping and active heating, it is important to appreciate the relative roles of these mechanisms for cost minimisation. Following the loss of hydrocarbons by documenting changes in total petroleum hydrocarbons offers little insight into the relative contribution of evaporation and biodegradation. We present a methodology here that allows identification and quantification of evaporative losses of diesel range organics at a range of temperatures using successively less volatile compounds as fractionation markers. We also present data that supports the general utility of so-called biodegradation indices for tracking biodegradation progress. We are also able to show that at 4 degrees C indigenous Antarctic soil bacteria degrade Special Antarctic Blend fuel components in the following order: naphthalene and methyl-napthalenes, light n-alkanes, then progressively heavier n-alkanes; whereas isoprenoids and the unresolved complex mixture are relatively recalcitrant.[Abstract] [Full Text] [Related] [New Search]