These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Author: Cui FJ, Li Y, Xu ZH, Xu HY, Sun K, Tao WY. Journal: Bioresour Technol; 2006 Jul; 97(10):1209-16. PubMed ID: 15990290. Abstract: In this work, a three-level Box-Behnken factorial design was employed combining with response surface methodology (RSM) to optimize the medium composition for the production of the mycelial biomass and exo-polymer in submerged cultures by Grifola frondosa GF9801. A mathematical model was then developed to show the effect of each medium composition and their interactions on the production of mycelial biomass and exo-polymer. The model estimated that, a maximal yield of mycelial biomass (17.61 g/l) could be obtained when the concentrations of glucose, KH2PO4, peptone were set at 45.2 g/l, 2.97 g/l, 6.58 g/l, respectively; while a maximal exo-polymer yield (1.326 g/l) could be achieved when setting concentrations of glucose, KH2PO4, peptone at 58.6 g/l, 4.06 g/l and 3.79 g/l, respectively. These predicted values were also verified by validation experiments. Compared with the values obtained by other runs in the experimental design, the optimized medium resulted in a significant increase in the yields of mycelial biomass and exo-polymer. Maximum mycelial biomass yield of 22.50 g/l was achieved in a 15-l fermenter using the optimized medium.[Abstract] [Full Text] [Related] [New Search]