These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses: a microarray analysis.
    Author: Yew EH, Cheung NS, Choy MS, Qi RZ, Lee AY, Peng ZF, Melendez AJ, Manikandan J, Koay ES, Chiu LL, Ng WL, Whiteman M, Kandiah J, Halliwell B.
    Journal: J Neurochem; 2005 Aug; 94(4):943-56. PubMed ID: 15992382.
    Abstract:
    Although inhibition of the ubiquitin proteasome system has been postulated to play a key role in the pathogenesis of neurodegenerative diseases, studies have also shown that proteasome inhibition can induce increased expression of neuroprotective heat-shock proteins (HSPs). The global gene expression of primary neurons in response to treatment with the proteasome inhibitor lactacystin was studied to identify the widest range of possible pathways affected. Our results showed changes in mRNA abundance, both at different time points after lactacystin treatment and at different lactacystin concentrations. Genes that were differentially up-regulated at the early time point but not when most cells were undergoing apoptosis might be involved in an attempt to reverse proteasome inhibitor-mediated apoptosis and include HSP70, HSP22 and cell cycle inhibitors. The up-regulation of HSP70 and HSP22 appeared specific towards proteasome inhibitor-mediated cell death. Overexpression of HSP22 was found to protect against proteasome inhibitor-mediated loss of viability by up to 25%. Genes involved in oxidative stress and the inflammatory response were also up-regulated. These data suggest an initial neuroprotective pathway involving HSPs, antioxidants and cell cycle inhibitors, followed by a pro-apoptotic response possibly mediated by inflammation, oxidative stress and aberrant activation of cell cycle proteins.
    [Abstract] [Full Text] [Related] [New Search]