These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphatidylcholine-dependent protein kinase C activation. Effects of cis-fatty acid and diacylglycerol on synergism, autophosphorylation and Ca(2+)-dependency.
    Author: Chen SG, Kulju D, Halt S, Murakami K.
    Journal: Biochem J; 1992 May 15; 284 ( Pt 1)(Pt 1):221-6. PubMed ID: 1599399.
    Abstract:
    A long-chain neutral phospholipid, dioleoylphosphatidylcholine, was found to support protein kinase C activation by cis-fatty acid and diacylglycerol (DAG). This effect of phosphatidylcholine (PC) is totally dependent on the presence of cis-fatty acid; PC greatly stimulates the cis-fatty acid-induced protein kinase C activity, but it does not activate protein kinase C at all, even in the presence of DAG, if cis-fatty acid is absent. DAG, however, plays a modulatory role in the presence of Ca2+; it further enhances the PC-potentiated cis-fatty acid activation of protein kinase C. Although the activities of all three protein kinase C subtypes tested (types I, II and III) are supported by this PC mechanism, type III is most sensitive to the DAG effect, and it is activated synergistically by cis-fatty acid and DAG. The potency of PC to support the synergistic activation of this subtype is equivalent to that of phosphatidylserine (PS). There are several differences, however, between PC- and PS-supported synergism observed in type III protein kinase C: (1) Ca(2+)-sensitivity is different; PC requires higher concentrations of Ca2+ (10-20 microM-Ca2+) than those required for PS (micromolar Ca2+); (2) PC/cis-fatty acid/DAG-induced autophosphorylation of protein kinase C subtypes (types I, II and III) is very weak, whereas PS/cis-fatty acid/DAG strongly stimulate autophosphorylation of these subtypes under the conditions at which both PC and PS systems fully activate the protein kinase C in terms of histone phosphorylation. These observations suggest that a neutral phospholipid such as PC may also participate in the activation and differential regulation of protein kinase C.
    [Abstract] [Full Text] [Related] [New Search]