These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Author: Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AA, Miner JN, Diamond MI. Journal: Proc Natl Acad Sci U S A; 2005 Jul 12; 102(28):9802-7. PubMed ID: 15994236. Abstract: Nuclear receptors (NRs) are ligand-regulated transcription factors important in human physiology and disease. In certain NRs, including the androgen receptor (AR), ligand binding to the carboxy-terminal domain (LBD) regulates transcriptional activation functions in the LBD and amino-terminal domain (NTD). The basis for NTD-LBD communication is unknown but may involve NTD-LBD interactions either within a single receptor or between different members of an AR dimer. Here, measurement of FRET between fluorophores attached to the NTD and LBD of the AR established that agonist binding initiated an intramolecular NTD-LBD interaction in the nucleus and cytoplasm. This intramolecular folding was followed by AR self-association, which occurred preferentially in the nucleus. Rapid, ligand-induced intramolecular folding and delayed association also were observed for estrogen receptor-alpha but not for peroxisome proliferator activated receptor-gamma2. An antagonist ligand, hydroxyflutamide, blocked the NTD-LBD association within AR. NTD-LBD association also closely correlated with the transcriptional activation by heterologous ligands of AR mutants isolated from hormone-refractory prostate tumors. Intramolecular folding, but not AR-AR affinity, was disrupted by mutation of an alpha-helical ((23)FQNLF(27)) motif in the AR NTD previously described to interact with the AR LBD in vitro. This work establishes an intramolecular NTD-LBD conformational change as an initial component of ligand-regulated NR function.[Abstract] [Full Text] [Related] [New Search]