These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A new strategy for improved secondary screening and lead optimization using high-resolution SPR characterization of compound-target interactions. Author: Huber W. Journal: J Mol Recognit; 2005; 18(4):273-81. PubMed ID: 15997470. Abstract: Biophysical label-free assays such as those based on SPR are essential tools in generating high-quality data on affinity, kinetic, mechanistic and thermodynamic aspects of interactions between target proteins and potential drug candidates. Here we show examples of the integration of SPR with bioinformatic approaches and mutation studies in the early drug discovery process. We call this combination 'structure-based biophysical analysis'. Binding sites are identified on target proteins using information that is either extracted from three-dimensional structural analysis (X-ray crystallography or NMR), or derived from a pharmacore model based on known binders. The binding site information is used for in silico screening of a large substance library (e.g. available chemical directory), providing virtual hits. The three-dimensional structure is also used for the design of mutants where the binding site has been impaired. The wild-type target and the impaired mutant are then immobilized on different spots of the sensor chip and the interactions of compounds with the wild-type and mutant are compared in order to identify selective binders for the binding site of the target protein. This method can be used as a cost-effective alternative to high-throughput screening methods in cases when detailed binding site information is available. Here, we present three examples of how this technique can be applied to provide invaluable data during different phases of the drug discovery process.[Abstract] [Full Text] [Related] [New Search]