These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Basolateral transport of tetraethylammonium by a clone of LLC-PK1 cells. Author: McKinney TD, Scheller MB, Hosford M, Lesniak ME, Haseley TS. Journal: J Am Soc Nephrol; 1992 Apr; 2(10):1507-15. PubMed ID: 1600123. Abstract: In these studies, a clone of cells derived from the porcine renal epithelial line LLC-PK1 grown on porous filters was used to evaluate basolateral uptake of the organic cation tetraethylammonium (TEA). (3H) TEA (1 microM) entered cells in a saturable and time-dependent manner achieving a steady-state value at 2 to 2.5 h. Uptake was reduced by hypothermia and the metabolic inhibitors sodium azide and iodoacetate. Several other organic cations in 1 mM concentrations inhibited the majority of TEA uptake. In lower concentrations, the inhibitory potency of these was: verapamil greater than cimetidine approximately amiloride approximately quinidine greater than procainamide approximately N1-methylnicotinamide. When sodium was replaced with potassium in the uptake medium, TEA uptake was also reduced consistent with electrogenic transport. However, uptake was reduced further by 1 mM cimetidine in the presence of both NaCl and KCl buffers. TEA uptake was not significantly different when the media pH was varied from 6.0 to 8.0. In addition, results of experiments in which intracellular pH was altered with NH4Cl were not consistent with the presence of organic cation/proton exchange. TEA/TEA exchange could not be demonstrated in experiments in which cells were preloaded with 1 mM nonradioactive TEA and uptake of (3H)TEA was measured or in which nonradioactive TEA in the external medium failed to enhance efflux from cells preloaded with (3H)TEA. These results indicate that the basolateral membrane of LLC-PKc10 cells has one or more transport processes for the mediated uptake of organic cations. However, the precise mechanism(s) involved in this transport remains to be elucidated.[Abstract] [Full Text] [Related] [New Search]