These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pulmonary embolism: comprehensive evaluation with MR ventilation and perfusion scanning with hyperpolarized helium-3, arterial spin tagging, and contrast-enhanced MRA.
    Author: Altes TA, Mai VM, Munger TM, Brookeman JR, Hagspiel KD.
    Journal: J Vasc Interv Radiol; 2005 Jul; 16(7):999-1005. PubMed ID: 16002508.
    Abstract:
    PURPOSE: Development of a comprehensive magnetic resonance (MR) examination consisting of MR angiography (MRA) and MR ventilation and perfusion (MR V/Q) scan for the detection of pulmonary emboli (PE) and assessment of the technique in a rabbit model. MATERIALS AND METHODS: Reversible PE was induced by inflating a non-detachable silicon balloon in the left pulmonary artery of five New Zealand White rabbits. MR V/Q scans were obtained prior to, during, and after balloon deflation. MRA was performed during balloon inflation. MR ventilation imaging was performed after the inhalation of hyperpolarized helium-3. MR perfusion imaging was performed with Flow-sensitive Alternating Inversion Recovery with an Extra Radiofrequency pulse technique (FAIRER). High-resolution contrast-enhanced MR pulmonary angiography was used to confirm the occlusion of the pulmonary artery. All imaging was performed on a 1.5-T whole body scanner with broadband capabilities. RESULTS: High-resolution ventilation images of the lungs were obtained. No ventilation defects were detected before, during, or after resolution of simulated PE. FAIRER imaging allowed visualization of pulmonary perfusion. No perfusion defects were detected prior to balloon inflation. During balloon inflation (PE), there was decreased perfusion in the left lower lobe. After reversal of the PE, there was improved perfusion to the left lower lobe. In analogy to nuclear medicine techniques, acute PE produced a mismatched defect in the MR V/Q scan. MRA verified the occlusive filling defect in the left pulmonary artery. CONCLUSION: High-resolution MRA and MR V/Q imaging of the lung is feasible and allows comprehensive assessment of pulmonary embolism in one imaging session.
    [Abstract] [Full Text] [Related] [New Search]