These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polycyclic aromatic hydrocarbon--DNA adducts in white blood cells from lung cancer patients: no correlation with adduct levels in lung. Author: van Schooten FJ, Hillebrand MJ, van Leeuwen FE, van Zandwijk N, Jansen HM, den Engelse L, Kriek E. Journal: Carcinogenesis; 1992 Jun; 13(6):987-93. PubMed ID: 1600621. Abstract: Smokers of cigarettes are exposed to a number of carcinogens, including polycyclic aromatic hydrocarbons (PAHs), and are at a high risk for lung cancer. PAHs exert their carcinogenic activity after metabolic activation to reactive intermediates that can damage DNA through adduct formation. Measuring DNA adducts in peripheral white blood cells (WBC) could serve as a means of monitoring human exposure to genotoxic agents and subsequently risk assessment. In this study, DNA from WBC obtained from 39 lung cancer patients was examined for PAH-DNA adducts both in an ELISA using a polyclonal antibody against benzo[a]pyrene 7,8-diol-9,10-epoxide (BPDE)-DNA and the 32P-post-labeling technique. The ELISA results showed BPDE-DNA antigenicity in WBC DNA from 12/38 (32%) patients and adduct levels ranged from 1.5 to greater than 150 adducts in 10(8) nucleotides. The autoradiographs of chromatograms of 32P-post-labeled digests of WBC DNA from the 38 patients showed a variety of adduct spots; relative adduct labeling (RAL) values ranged from 0.3 to 407 adducts in 10(8) nucleotides. In 18 of the 38 (47%) persons an adduct spot was detected that co-chromatographed with the major BPDE-DNA adduct (BPDE-dG); RAL values ranged from 0.03 to 382 adducts in 10(8) nucleotides. Correlations were not significant between the adduct levels in WBC and smoking habits, age or sex. From 20 patients of the same group lung tissue was collected at surgery and examined for PAH-DNA adducts by ELISA and 32P-post-labeling assay. No significant correlation was found between DNA adduct levels in blood and lung. This finding stresses the limitations of the use of WBC as a surrogate for adduct levels in the target organ.[Abstract] [Full Text] [Related] [New Search]