These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Small-angle neutron scattering study of temperature-induced emulsion gelation: the role of sticky microgel particles.
    Author: Koh AY, Saunders BR.
    Journal: Langmuir; 2005 Jul 19; 21(15):6734-41. PubMed ID: 16008382.
    Abstract:
    In this work, small-angle neutron scattering (SANS) is used to probe the structural transformations that accompany temperature-induced gelation of emulsions stabilized by a temperature-responsive polymer. The latter is poly(NIPAM-co-PEGMa) (N-isopropylacrylamide and poly(ethyleneglycol) methacrylate) and contains 86 mol% NIPAM. Turbidity measurements revealed that poly(NIPAM-co-PEGMa) has a lower critical solution temperature (T(LCST)) of 36.5 degrees C in D(2)O. Aqueous polymer solutions were used to prepare perfluorodecalin-in-water emulsions (average droplet size of 6.9 mum). These emulsions formed gels at 50 degrees C. SANS measurements were performed on the poly(NIPAM-co-PEGMa) solutions and emulsions as a function of temperature. The emulsion was also prepared using a D2O/H2O mixture containing 72 vol% D2O in order to make scattering from the droplets negligible (on-contrast). The SANS data were analyzed using a combination of Porod and Ornstein-Zernike form factors. The results showed that the correlation length (xi) of the polymer scaled as xi approximately phi(p)(-0.68) at 32 degrees C, where phi(p) is the polymer volume fraction. The xi value increased for all systems as the temperature increased, which was attributed to a spinodal transition. At temperatures greater than T(LCST), the polymer solution changed to a polymer dispersion of poly(NIPAM-co-PEGMa) aggregates. The aggregates have features that are similar to microgel particles. The average size of these particles was estimated as 160-170 nm. The particles are "sticky" and are gel-forming. The on-contrast experiments performed using the emulsion indicated that the interfacial polymer chains condensed to give a relatively thick polymer layer at the perfluorodecalin-water interface at 50 degrees C. The gelled emulsions appear to consist of perfluorodecalin droplets with an encapsulating layer of collapsed polymer to which sticky microgel particles are adsorbed. The latter act as a "glue" between coated droplets in the emulsion gel.
    [Abstract] [Full Text] [Related] [New Search]