These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arsenite induces a cell stress-response gene, RTP801, through reactive oxygen species and transcription factors Elk-1 and CCAAT/enhancer-binding protein.
    Author: Lin L, Stringfield TM, Shi X, Chen Y.
    Journal: Biochem J; 2005 Nov 15; 392(Pt 1):93-102. PubMed ID: 16008523.
    Abstract:
    RTP801 is a newly discovered stress-response gene that is induced by hypoxia and other cell stress signals. Arsenic is a heavy metal that is linked to carcinogenesis in humans. Here, we investigated the mechanism by which arsenic induces RTP801 transcription. In HaCaT human keratinocytes, arsenite was able to induce a rapid rise in the RTP801 mRNA level. Correspondingly, arsenite treatment was capable of stimulating a 2.5 kb human RTP801 promoter. Such a stimulatory effect was inhibited by co-expression of superoxide dismutase or glutathione peroxidase, and was abrogated by N-acetylcysteine, implying that ROS (reactive oxygen species) were involved in transcriptional regulation of the RTP801 gene. A series of deletion studies with the promoter revealed a critical arsenic-responsive region between -1057 and -981 bp of the promoter. Point mutations of the putative Elk-1 site and the C/EBP (CCAAT/enhancer-binding protein) site within this region were able to reduce the stimulatory effect of arsenite, indicating that Elk-1 and C/EBP are involved in transcriptional regulation of the RTP801 gene by arsenite. Furthermore, a gel mobility-shift assay demonstrated that arsenite was able to mount the rapid formation of a protein complex that bound the arsenic-responsive region as well as the C/EBP-containing sequence. The arsenite stimulation on RTP801 transcription was partly mediated by the ERK (extracellular-signal-regulated kinase) pathway, since the effect of RTP801 was inhibited by a selective ERK inhibitor. In addition, overexpression of Elk-1 and C/EBPbeta was able to elevate the promoter activity. Therefore these studies indicate that RTP801 is a transcriptional target of arsenic in human keratinocytes, and that arsenic and ROS production are linked to Elk-1 and C/EBP in the transcriptional control.
    [Abstract] [Full Text] [Related] [New Search]