These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity.
    Author: Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GD, Crapo JD, Entman ML, Taegtmeyer H.
    Journal: Circulation; 2005 Jul 19; 112(3):407-15. PubMed ID: 16009788.
    Abstract:
    BACKGROUND: The peroxisome proliferators-activated receptor-alpha (PPARalpha), a transcription factor that modulates fatty acid metabolism, regulates substrate preference in the heart. Although in acute ischemia there is a switch in substrate preference from fatty acids to glucose, metabolic gene expression in repetitive ischemia is not well described. In a mouse model of ischemic cardiomyopathy induced by repetitive ischemia/reperfusion (I/R), we postulated that downregulation of PPARalpha is regulated by reactive oxygen species and is necessary for maintaining contractile function in the heart. METHODS AND RESULTS: Repetitive closed-chest I/R (15 minutes) was performed daily in C57/BL6 mice, mice overexpressing extracellular superoxide dismutase, and mice treated with the PPARalpha agonist-WY-14,643. Echocardiography, histology, and candidate gene expression were measured at 3, 5, 7, and 28 days of repetitive I/R and 15 and 30 days after discontinuation of I/R. Repetitive I/R was associated with a downregulation of PPARalpha-regulated genes and both myosin heavy chain isoform transcript levels, which was reversible on discontinuation of I/R. Overexpression of EC-SOD prevented the downregulation of PPARalpha-regulated genes and myosin iso-genes by repetitive I/R. Furthermore, reactivation of PPARalpha in mice exposed to repetitive I/R worsened contractile function, induced microinfarctions, and increased intramyocardial triglyceride deposition, features suggestive of cardiac lipotoxicity. CONCLUSIONS: Metabolic and myosin isoform gene expression in repetitive I/R is mediated by reactive oxygen species. Furthermore, we suggest that downregulation of PPARalpha in repetitive I/R is an adaptive mechanism that is able to prevent lipotoxicity in the ischemic myocardium.
    [Abstract] [Full Text] [Related] [New Search]