These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Early growth response proteins EGR-4 and EGR-3 interact with immune inflammatory mediators NF-kappaB p50 and p65.
    Author: Wieland GD, Nehmann N, Müller D, Eibel H, Siebenlist U, Sühnel J, Zipfel PF, Skerka C.
    Journal: J Cell Sci; 2005 Jul 15; 118(Pt 14):3203-12. PubMed ID: 16014385.
    Abstract:
    Here, we characterize the basis for the T-cell-specific activity of the human zinc-finger protein early growth response factor 4 (EGR-4). A yeast two-hybrid screen showed interaction of EGR-4 with NF-kappaB p50. Using recombinant proteins, stable physical complex formation was confirmed for EGR-4 and EGR-3 with p50 and with p65 using glutathione-S-transferase pull-down assays and surface-plasmon-resonance and peptide-spot analyses. In vivo interaction of EGR-4 and EGR-3 with NF-kappaB p65 was demonstrated by immunoprecipitation experiments and fluorescence-resonance-energy transfer (FRET) analysis showing interaction in the nucleus of transfected Jurkat T cells. In transfection assays, EGR-p50 complexes were transcriptionally inactive and EGR-p65 complexes strongly activated transcription of the promoters of the human genes encoding the cytokines interleukin 2, tissue necrosis factor alpha and ICAM-1. The EGR-p65 complexes increased reporter-gene activity about 100-fold and thus exceeded the transcriptional activities of the p65 homodimer and the p65/p50 heterodimers. The major interaction domain for p65 was localized within the third zinc finger of EGR-4 using deletion mutants for pull-down assays and peptide-spot assays. By computer modeling, this interaction domain was localized to an alpha-helical region and shown to have the central amino acids surface exposed and thus accessible for interaction. In summary, in T cells, the two zinc-finger proteins EGR-4 and EGR-3 interact with the specific nuclear mediator NF-kappaB and control transcription of genes encoding inflammatory cytokines.
    [Abstract] [Full Text] [Related] [New Search]