These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Training-induced sarcoplasmic reticulum Ca2+ unloading occurs without Ca2+ influx. Author: Witczak CA, Sturek M. Journal: Med Sci Sports Exerc; 2005 Jul; 37(7):1119-25. PubMed ID: 16015127. Abstract: INTRODUCTION: Aerobic exercise training elicits adaptations in coronary smooth muscle that result in a novel intracellular Ca2+ signaling phenomenon termed sarcoplasmic reticulum (SR) Ca2+ unloading. Sarcoplasmic reticulum Ca2+ unloading is defined as a time-dependent depletion and then repletion of the caffeine-sensitive SR Ca2+ store. PURPOSE: To determine whether Ca2+ influx is necessary to elicit SR Ca2+ unloading. METHODS: Male, Yucatan swine (8 months old) were maintained: 1) sedentary or 2) exercise trained (treadmill running performed 5 d.wk(-1) for 16 wk). Smooth muscle cells were isolated from the right coronary artery and loaded with the intracellular Ca2+-indicator, fura-2. Sarcoplasmic reticulum Ca2+ content was assessed as the change in the caffeine (5 mM)-induced intracellular Ca2+ peak after a 2-, 5-, 8-, 11- or 13-min recovery from high K+ (depolarization)-induced Ca2+ influx in a physiological (2 mM) Ca2+ solution. The effect of Ca2+ influx on SR Ca2+ unloading was assessed by replacing the 2 mM Ca2+ solution with a virtually Ca2+-free (100 nM) solution during the recovery period. RESULTS: Consistent with previous studies, SR Ca2+ unloading was not observed in cells from sedentary swine. In cells from exercise-trained swine, SR Ca2+ depletion was observed in both the 2 mM and Ca2+-free solutions, suggesting that Ca2+-induced Ca2+ release was not initiating SR Ca2+ unloading during the recovery period. In addition, the reloading of the SR Ca2+ store occurred even in the Ca2+-free solution, suggesting that exercise training facilitates an internal cycling of Ca2+ between the SR and another intracellular Ca2+ store. CONCLUSION: In coronary smooth muscle from male swine, Ca2+ influx is not necessary for the exercise training-induced phenomenon, SR Ca2+ unloading.[Abstract] [Full Text] [Related] [New Search]