These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Altered gravity affects subnucleolus localization of fibrillarin and NopA64, the most important proteins of rRNA processing]. Author: Sobol' MA, Kordium EL, Gonzalez-Camacho F, Rodriguez-Vilarino V, Medina FJ. Journal: Tsitol Genet; 2005; 39(1):52-62. PubMed ID: 16018178. Abstract: Fibrillarin and plant nucleolin homologue NopA64 are two important nucleolar proteins involved in pre-rRNA processing. To understand better the effects of the altered gravity environment on the nucleolus functioning we have investigated the location of fibrillarin and NopA64 in nucleolar subcomponents of cress (Lepidium sativum L.) root meristematic cells grown under simulated microgravity that was compared to the control cells grown in normal conditions at I g. Cress fibrillarin was first shown to have the molecular weight 41 kDa. Both fibrillarin and NopA64 in the cress cell nucleolus are located in the zones known to contain processing pre-rRNA molecules as it has been previously reported in other species. The data confirm participation of these proteins in processomes--RNP complex particles involved in pre-rRNA processing. Under altered gravity a decrease in the quantity of both fibrillarin and NopA64 in the transition zone between fibrillar centres and the dense fibrillar component was observed, compared to control, which could point out to a lowering of the level of early pre-rRNA processing in these experimental conditions. This decrease was also detected in the bulk of the dense fibrillar component. These data support the idea that altered (reduced) gravity results in lowering the level of functional activity of the nucleolus.[Abstract] [Full Text] [Related] [New Search]