These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. Author: Gerber LD, Kodukula K, Udenfriend S. Journal: J Biol Chem; 1992 Jun 15; 267(17):12168-73. PubMed ID: 1601882. Abstract: Secreted proteins are processed from a nascent form that contains an NH2-terminal signal peptide. During processing, the latter is cleaved by a specific NH2-terminal signal peptidase. The nascent form of phosphatidylinositol glycan (PI-G) tailed proteins contain both an NH2- and a COOH-terminal signal peptide. The two signal peptides have much in common, such as size and hydrophobicity. The COOH-terminal peptide is also cleaved during processing. We propose that the amino acid in a nascent protein that ultimately combines with the PI-G moiety be designated the omega site. Amino acids adjacent and COOH-terminal to the omega site would then be omega + 1, omega + 2, etc. In previous studies, we showed that allowable substitutions at the omega site of an engineered form of placental alkaline phosphatase (miniPLAP) are limited to 6 small amino acids. In the present study, mutations were made at the omega + 1 and omega + 2 sites. At the omega + 1 site, processing to varying degrees was observed with 8 of the 9 amino acids substituted for alanine, the normal constituent. Only the proline mutant showed no processing. By contrast, the only substituents permitted at the omega + 2 site were glycine and alanine, with only trace activity observed with serine and cysteine. Thus, just as there is a -1, -3 rule for predicting cleavage by NH2-terminal signal peptidase, there appears to be a comparable omega, omega + 2 rule for predicting cleavage/PI-G addition by COOH-terminal signal transamidase.[Abstract] [Full Text] [Related] [New Search]