These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oleic acid-induced lung injury in rats and effects of caffeic acid phenethyl ester. Author: Koksel O, Kaplan MB, Ozdulger A, Tamer L, Degirmenci U, Cinel L, Bastürk M, Kanik A. Journal: Exp Lung Res; 2005 Jun; 31(5):483-96. PubMed ID: 16019983. Abstract: Caffeic acid phenethyl ester (CAPE) is a phenolic antioxidant and is an active anti-inflammatory component of honeybee propolis. The authors evaluated the effects of CAPE on oxidative stress and lung damage in an oleic acid (OA)-induced lung-injury model. Rats were divided into 5 groups as sham, OA, CAPE, pre-OA-CAPE, and post-OA-CAPE. Acute lung injury was induced by intravenous administration of 100 mg/kg of OA. Pre-OA-CAPE group received CAPE (10 micromol/kg. intravenously) 15 minutes before OA infusion and post-OA-CAPE group received CAPE 2 hours after OA administration. Malondialdehyde (MDA) level of plasma, bronchoalveolar lavage fluid (BALF), and lung tissue; myeloperoxidase activity of BALF and lung tissue; Na(+)-K(+) ATPase activity of lung tissue; and total protein content of BALF were measured. Light microscopic analyses of lung specimens were performed. The increased MDA levels in lung homogenates (47.98+/-13.75 nmol/mL), BALF (31.12+/-3.07 nmol/mL), and plasma (61.84+/-15.34 nmol/mL) decreased significantly to 24.33+/-3.09 nmol/mL (P = 0.000), 23.19+/-4.97 nmol/mL (P = 0.002), and 27.36+/-5.37 nmol/mL (P = 0.000), respectively, following CAPE administration in pre-OA-CAPE group. Another important finding was the restoration of the enzymatic activity of Na(+)-K(+) ATPase from a value of 203.89+/-32.18 nmol Pi/mg Protein/h in OA group, to a value of 302.17+/-51.90 nmol Pi/mg Protein/h (P = 0.012) in pre-OA-CAPE group with CAPE treatment. CAPE has been shown to have a clear attenuating effect on oxidative damage in experimental animal studies. However, further investigations are necessary to suggest CAPE as a treatment agent in critically ill patients with lung injury.[Abstract] [Full Text] [Related] [New Search]