These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Angioarchitecture and innervation of the primate anterior episclera. Author: Selbach JM, Rohen JW, Steuhl KP, Lütjen-Drecoll E. Journal: Curr Eye Res; 2005 May; 30(5):337-44. PubMed ID: 16020264. Abstract: PURPOSE: To investigate the primate episcleral vasculature and its innervation with respect to morphological specializations. METHODS: Serial sections of the anterior episclera of 8 monkey eyes and 20 human eyes were investigated enzyme- and immunohistochemically using antibodies against smooth-muscle alpha-actin (SMA), neurofilament, synaptophysin, substance P (SP), calcitonin gene-related peptide (CGRP), vesicular acetylcholine transporter (VACHT), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), tyrosine hydroxylase (TH), vesicular monoamine transporter II (VMAT II), as well as the NADPH-diaphorase reaction. Arteriovenous anastomoses (AVA) were quantified. RESULTS: All episcleral vessels including veins showed intense staining for SMA. Capillary loops were only seen in the limbal arcades, not in the episclera itself. Instead, AVA connected the episcleral arteries with the veins, which formed an interlacing vascular network. In the monkey episclera, 4-6/mm2 AVA were found; in the human episclera, 0.5-1/mm2. Numerous nerve endings staining for NADPHd (NADPHdiaphorase) and TH surrounded all episcleral vessels including anastomoses and veins. NPY, VIP, and VACHT-immunoreactive (IR) nerve terminals were less numerous. CGRP and SP-IR terminals were seen both at the vessels and in the intervascular connective tissue. CONCLUSIONS: The episcleral vasculature shows a specialized morphology with absence of capillaries, numerous arteriovenous anastomoses, a muscle-rich venous network, and intense innervation by vasodilative and vasoconstrictive nerves. This might allow regulation of blood flow and volume in the episcleral vessels and Voigt's capillaries for thermoregulation and modulation of episcleral venous pressure and thereby outflow facility.[Abstract] [Full Text] [Related] [New Search]