These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Co-expression of cytochrome b561 and ascorbate oxidase in leaves of wild watermelon under drought and high light conditions. Author: Nanasato Y, Akashi K, Yokota A. Journal: Plant Cell Physiol; 2005 Sep; 46(9):1515-24. PubMed ID: 16020428. Abstract: Despite carrying out C3 photosynthesis, wild watermelon (Citrullus lanatus sp.) exhibits exceedingly good tolerance to severe drought at high light intensities. However, the mechanism(s) by which this plant protects itself from photodamage has yet to be elucidated. In this study, we characterized wild watermelon cytochrome b561 (cyt b561), which potentially mediates regeneration of apoplastic ascorbate by transferring electrons from cytosolic ascorbate across the plasma membrane. Two cDNA species for wild watermelon cyt b561, designated CLb561A and CLb561B, were isolated. Levels of both CLb561A mRNA and protein were significantly elevated in the leaves during drought at a light intensity of 700 micromol photons m(-2) s(-1). The transcript of CLb561B was detected to a much lesser extent, but no CLb561B protein was produced under any condition used in this study. A transient expression assay with the CLb561A::green fluorescent protein fusion construct showed clear fluorescence on the plasma membrane of onion epidermal cells. The CLb561A protein was enriched in the plasma membrane fraction in leaves of transgenic tobacco expressing CLb561A. Moreover, the high activity of apoplastic ascorbate oxidase (AO), which was able to dispose of cyt b561-transferred reducing equivalents, increased in leaves of wild watermelon grown at high light intensity, but not lower light intensities. Taken together, these observations suggest the occurrence of a novel pathway for excess light energy dissipation in wild watermelon leaves, where excessive energy absorbed by chloroplasts can be transported to and dissipated safely in the apoplasts through the cooperative action of cyt b561 and AO.[Abstract] [Full Text] [Related] [New Search]