These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Syntheses of beta-(1-->6)-branched beta-(1-->3)-linked d-galactans that exist in the rhizomes of Atractylodes lancea DC. Author: Li A, Kong F. Journal: Carbohydr Res; 2005 Sep 05; 340(12):1949-62. PubMed ID: 16023629. Abstract: Effective syntheses of galactose hepta-, octa-, nona-, and decasaccharides that exist in the rhizomes of Atractylodes lancea DC were achieved with 2,3,4,6-tetra-O-benzoyl-alpha-d-galactopyranosyl trichloroacetimidate (1), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-d-galactopyranoside (2), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-d-galactopyranosyl trichloroacetimidate (5), 4-methoxyphenyl 6-O-acetyl-2,4-di-O-benzoyl-beta-d-galactopyranoside (22), and 4-methoxyphenyl 2,4,6-tri-O-benzoyl-beta-d-galactopyranoside (26) as the key synthons. Coupling of 2 with 1, followed by oxidative cleavage of 1-OMP and subsequent trichloroacetimidate formation gave the beta-(1-->6)-linked disaccharide donor 4. Condensation of 2 with 5 and subsequent selective deacetylation by methanolysis produced the beta-(1-->6)-linked disaccharide acceptor 7. Reaction of 7 with 4, oxidative cleavage of 1-OMP, and trichloroacetimidate formation produced the tetrasaccharide donor 9. The penta- (15), the hexa- (17), and the heptasaccharide donor 19 were synthesized similarly. Meanwhile, treatment of 1 with 22 yielded beta-(1-->3)-linked disaccharide 23 and alpha-(1-->3)-linked disaccharide 25. Oxidative cleavage of 1-OMp of 23 followed by trichloroacetimidate formation produced the disaccharide donor 24. Coupling of 26 with 24, again, gave beta-linked 27 and alpha-linked 29. Selective 6-O-deacetylation of 27 afforded the trisaccharide acceptor 28. TMSOTf-promoted condensation 28 of with the tetra- (9), penta- (15), hexa-(17), and heptasaccharide donor 19, followed by deprotection, gave the target compounds.[Abstract] [Full Text] [Related] [New Search]