These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electron paramagnetic resonance study of 3,4,5-trimethoxytetraphenyl porphyrinoxovanadium (IV) complex.
    Author: Sharma S, Kumar A, Chand P, Sharma BK, Sarkar S.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2006 Mar 01; 63(3):556-64. PubMed ID: 16024276.
    Abstract:
    3,4,5-Trimetoxytetraphenylporphyrinoxovanadium (IV) complex (3,4,5-TMVOTPP) was synthesized by a new one pot synthetic method. The complex was studied in the form of single crystal, powder (polycrystalline state), solution and frozen solution (glassy state) by electron paramagnetic resonance (EPR) between room temperature (RT) and liquid nitrogen temperature (LNT). Interestingly a well-resolved octet in the EPR spectrum at RT is observed in the pure paramagnetic state of the crystal. This observation is attributed to a greatly reduced dipolar interaction between paramagnetic vanadyl ions due to the large size of the molecule and the resultant stacking in the crystalline state. The line width of the EPR signals in single crystal at RT is approximately 3.3 mT which is more than the usual line width in diluted paramagnets ( approximately 1.5 mT) and is attributed to some kind of broadening effect akin to slow motion broadening. The line width in solvents is more than the crystal value but decreases appreciably at low temperatures. The decrease in line width at low temperature is attributed to the increase in spin-lattice-relaxation time and quenching of RT broadening motion. Only one octet is observed in the crystal EPR spectra which suggests only one formula unit per unit cell or a parallel/antiparallel ordering of V=O vectors in case the formula units per unit cell are more than one. This result needs verification by a detailed X-ray investigation. The crystalline field symmetry around the V(4+) metal ion is revealed to be axial by the observed angular dependence of the EPR spectrum and the powder EPR spectrum. No super hyperfine splitting of the hyperfine lines of the vanadyl ion is observed in solid state or diluted glass up to liquid nitrogen temperature. This suggests an expected weak in-plane pi-bonding with ligands. The spin Hamiltonian parameters for vanadyl ion in crystal, powder, diluted solutions and frozen glasses are evaluated and discussed.
    [Abstract] [Full Text] [Related] [New Search]