These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics.
    Author: Yoon MH, Yan H, Facchetti A, Marks TJ.
    Journal: J Am Chem Soc; 2005 Jul 27; 127(29):10388-95. PubMed ID: 16028951.
    Abstract:
    The quest for high-performance organic thin-film transistor (OTFT) gate dielectrics is of intense current interest. Beyond having excellent insulating properties, such materials must meet other stringent requirements for optimum OTFT function: efficient low-temperature solution fabrication, mechanical flexibility, and compatibility with diverse gate materials and organic semiconductors. The OTFTs should function at low biases to minimize power consumption, hence the dielectric must exhibit large gate capacitance. We report the realization of new spin-coatable, ultrathin (<20 nm) cross-linked polymer blends exhibiting excellent insulating properties (leakage current densities approximately 10(-)(8) Acm(-)(2)), large capacitances (up to approximately 300 nF cm(-)(2)), and enabling low-voltage OTFT functions. These dielectrics exhibit good uniformity over areas approximately 150 cm(2), are insoluble in common solvents, can be patterned using standard microelectronic etching methodologies, and adhere to/are compatible with n(+)-Si, ITO, and Al gates, and with a wide range of p- and n-type semiconductors. Using these dielectrics, complementary invertors have been fabricated which function at 2 V.
    [Abstract] [Full Text] [Related] [New Search]