These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [The effects of hepatitis C virus core protein on biological behaviors of human hepatocytes].
    Author: Li B, Feng DY, Cheng RX, He QQ, Hu ZL, Zheng H, Wen JF.
    Journal: Zhonghua Yi Xue Za Zhi; 2005 May 18; 85(18):1243-8. PubMed ID: 16029608.
    Abstract:
    OBJECTIVE: To investigate the effects of hepatitis C virus (HCV) core protein on the biological behaviors of human hepatocytes and their underlying mechanism. METHODS: A cell line expressing stably HCV core protein-QSG7701/core was constructed by transfecting the plasmid pcDNA3.1-core (expressing HCV core protein) into the human immortalized hepatocytes of the line QSG7701. The biological behaviors of these transfected cells were observed through plating-efficiency test, growth curve and flow cytometry (FCM). The association between HCV core protein and the expression of activated caspase-3 protein was evaluated by immunocytochemistry. The phosphorylation of mitogen-activate protein kinases (MAPKs) was detected with Western blotting. The activation of nuclear transcriptors AP-1, important effector molecule of MAPKs, and nuclear factor-kappa binding (NF-kappaB) were evaluated with luciferase assays and electrophoretic mobility shift assay (EMSA). RESULTS: HCV core protein was expressed in the QSG7701/core cells and not in the QSG7701/pcDNA3.1 cells and untransfected QSG7701 cells. There were no significant differences in the expression levels of total P44/42(MAPK), p38(MAPK) and JNK among the QSG7701/core cells, QSG7701/pcDNA3.1 cells and untransfected QSG7701 cells. The expression levels of phophorylated P44/42(MAPK), p38(MAPK) and JNK in the QSG7701/core cells were significantly weaker than those in the QSG7701/pcDNA3.1 cells and untransfected QSG7701 cells. Plating efficiency test showed that the clone formation rate of the QSG7701/core cells was 32.25%, significantly lower than those of QSG7701/pcDNA3.1 and untransfected QSG7701 cells (47.5% and 42.5% respectively, both P < 0.01). The growth curve showed that the multiplication time of the QSG7701/core cells was 36 hours, significantly longer than those of the QSG7701/pcDNA3.1 and untransfected QSG7701 cells (27 and 28 hours respectively). FCM showed that the apoptotic rate of the QSG770/1core was 1.04%, lower than those of the QSG7701/pcDNA3.1 and untransfected QSG7701 cells (1.68% and 3.7% respectively), and that the percentage of theQSG770/1core cells at the G(0)/G(1) stage increased and those in the S stage decreased. Immunocytochemistry showed that the expression intensity of caspase-3 in the QSG7701/core cells was significantly weaker than those of the QSG7701/pcDNA3.1 cells and untransfected QSG7701 cells. CONCLUSION: HCV core protein suppresses cell proliferation and apoptosis by downregmicrolating the phosphorylation of MAPKs and activating the transcriptors AP-1 and NF-kappaB, thus promoting the persistency of HCV infection which leads to chronic hepatitis C and hepatocellular cancer.
    [Abstract] [Full Text] [Related] [New Search]