These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. Author: Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, van Heeke G, Houslay MD. Journal: J Biol Chem; 2005 Sep 30; 280(39):33178-89. PubMed ID: 16030021. Abstract: PDE4B and PDE4D provide >90% of PDE4 cAMP phosphodiesterase activity in human embryonic kidney (HEK293B2) cells. Their selective small interference RNA (siRNA)-mediated knockdown potentiates isoprenaline-stimulated protein kinase A (PKA) activation. Whereas endogenous PDE4D co-immunoprecipitates with beta arrestin, endogenous PDE4B does not, even upon PDE4D knockdown. Ectopic overexpression of PDE4B2 confers co-immunoprecipitation with beta arrestin. Knockdown of PDE4D, but not PDE4B, amplifies isoprenaline-stimulated phosphorylation of the beta2-adrenergic receptor (beta2-AR) by PKA and activation of extracellular signal-regulated kinase (ERK) through G(i). Isoform-selective knockdown identifies PDE4D5 as the functionally important species regulating isoprenaline stimulation of both these processes. Ht31-mediated disruption of the tethering of PKA to AKAP scaffold proteins attenuates isoprenaline activation of ERK, even upon PDE4D knockdown. Selective siRNA-mediated knockdown identifies AKAP79, which is constitutively associated with the beta2-AR, rather than isoprenaline-recruited gravin, as being the functionally relevant AKAP in this process. Isoprenaline-stimulated membrane recruitment of PDE4D is ablated upon beta arrestin knockdown. A mutation that compromises interactions with beta arrestin prevents catalytically inactive PDE4D5 from performing a dominant negative role in potentiating isoprenaline-stimulated ERK activation. Beta arrestin-recruited PDE4D5 desensitizes isoprenaline-stimulated PKA phosphorylation of the beta2-AR and the consequential switching of its signaling to ERK. The ability to observe a cellular phenotype upon PDE4D5 knockdown demonstrates that other PDE4 isoforms, expressed at endogenous levels, are unable to afford rescue in HEK293B2 cells.[Abstract] [Full Text] [Related] [New Search]