These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transcriptional stochasticity in gene expression.
    Author: Lipniacki T, Paszek P, Marciniak-Czochra A, Brasier AR, Kimmel M.
    Journal: J Theor Biol; 2006 Jan 21; 238(2):348-67. PubMed ID: 16039671.
    Abstract:
    Due to the small number of copies of molecular species involved, such as DNA, mRNA and regulatory proteins, gene expression is a stochastic phenomenon. In eukaryotic cells, the stochastic effects primarily originate in regulation of gene activity. Transcription can be initiated by a single transcription factor binding to a specific regulatory site in the target gene. Stochasticity of transcription factor binding and dissociation is then amplified by transcription and translation, since target gene activation results in a burst of mRNA molecules, and each mRNA copy serves as a template for translating numerous protein molecules. In the present paper, we explore a mathematical approach to stochastic modeling. In this approach, the ordinary differential equations with a stochastic component for mRNA and protein levels in a single cells yield a system of first-order partial differential equations (PDEs) for two-dimensional probability density functions (pdf). We consider the following examples: Regulation of a single auto-repressing gene, and regulation of a system of two mutual repressors and of an activator-repressor system. The resulting PDEs are approximated by a system of many ordinary equations, which are then numerically solved.
    [Abstract] [Full Text] [Related] [New Search]