These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops.
    Author: Mamy L, Barriuso E, Gabrielle B.
    Journal: Pest Manag Sci; 2005 Sep; 61(9):905-16. PubMed ID: 16041722.
    Abstract:
    The introduction of crops resistant to the broad spectrum herbicide glyphosate, N-(phosphonomethyl)glycine, may constitute an answer to increased contamination of the environment by herbicides, since it should reduce the total amount of herbicide needed and the number of active ingredients. However, there are few published data comparing the fate of glyphosate in the environment, particularly in soil, with that of substitute herbicides. The objective of this study is to compare the fate of glyphosate in three soils with that of four herbicides frequently used on crops that might be glyphosate resistant: trifluralin, alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine, and metazachlor, 2-chloro-N-(pyrazol-1-ylmethyl)acet-2',6'-xylidide for oilseed rape, metamitron, 4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-triazin-5-one for sugarbeet and sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione for maize. The distribution of herbicides between the volatilized, mineralized, extractable and non-extractable fractions was studied, along with the formation of their metabolites in laboratory experiments using 14C-labelled herbicides, over a period of 140 days. The main dissipation pathways were mineralization for glyphosate and sulcotrione, volatilization for trifluralin and non-extractable residues formation for metazachlor and metamitron. The five herbicides had low persistence. Glyphosate had the shortest half-life, which varied with soil type, whereas trifluralin had the longest. The half-lives of metazachlor and sulcotrione were comparable, whereas that of metamitron was highly variable. Glyphosate, metazachlor and sulcotrione were degraded into persistent metabolites. Low amounts of trifluralin and metamitron metabolites were observed. At 140 days after herbicide applications, the amounts of glyphosate and its metabolite residues in soils were the lowest in two soils, but not in the third soil, a loamy sand with low pH. The environmental advantage in using glyphosate due to its rapid degradation is counterbalanced by accumulation of aminomethylphosphonic acid specifically in the context of extensive use of glyphosate.
    [Abstract] [Full Text] [Related] [New Search]