These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of persistent monoarthritis of the temporomandibular joint region on acute mustard oil-induced excitation of trigeminal subnucleus caudalis neurons in male and female rats.
    Author: Bereiter DA, Okamoto K, Bereiter DF.
    Journal: Pain; 2005 Sep; 117(1-2):58-67. PubMed ID: 16043292.
    Abstract:
    The effect of persistent inflammation of the temporomandibular (TMJ) region on Fos-like immunoreactivity (Fos-LI) evoked by acute noxious stimulation of the same or opposite TMJ was assessed in male and cycling female rats. Two weeks after inflammation of the TMJ by complete Freund's adjuvant (CFA, 25 microg) the selective small fiber excitant, mustard oil (MO, 20%), was injected into the arthritic or opposite TMJ under barbiturate anesthesia. MO stimulation of the arthritic TMJ increased Fos-LI ipsilateral, but not contralateral, to MO compared to naïve subjects in superficial laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C2) junction independent of sex hormone status. Unexpectedly, MO stimulation of the opposite TMJ in arthritic rats also produced a greater Fos-LI response ipsilateral to MO than naïve animals. Fos-LI produced in the dorsal paratrigeminal region (dPa5) and Vc/C2 junction after MO stimulation of the normal TMJ was significantly greater in proestrous than diestrous females or male monoarthritic rats. In contrast to naïve animals, Fos-LI was produced in deep laminae at the Vc/C2 junction ipsilateral to MO in CFA-treated animals independent of the site of prior CFA inflammation or sex hormone status. These results indicated that persistent monoarthritis of the TMJ region enhanced the excitability of trigeminal brainstem neurons to subsequent TMJ injury that occurred bilaterally in multiple regions of the lower trigeminal brainstem complex and depended on sex hormone status.
    [Abstract] [Full Text] [Related] [New Search]