These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh 1 mRNAs in rodent embryos.
    Author: Westerlund M, Galter D, Carmine A, Olson L.
    Journal: Cell Tissue Res; 2005 Nov; 322(2):227-36. PubMed ID: 16047160.
    Abstract:
    Alcohol and aldehyde dehydrogenases (ADHs and ALDHs) may be of interest in the pathology of Parkinson's disease (PD) because of their role in protection against toxins and in retinoid metabolism, which is required for growth and development of the mesencephalic dopamine system. In the present study, the spatial and temporal expression patterns of Adh 1, Adh 3, Adh 4, and Aldh 1 mRNAs in embryonic C57BL/6 mice (E 9.5-E19.5) and Sprague-Dawley rats (E12.5-P0) have been investigated by using radioactive oligonucleotide in situ hybridization. High expression of Aldh 1 mRNA was found in the developing mesencephalic dopamine neurons of both mice and rats. Expression of Adh 1 and Adh 4 mRNAs was observed in adrenal cortex and olfactory epithelium in mice. Additionally, Adh 1 was expressed in epidermis, liver, conjunctival, and intestinal epithelium. In rat embryos, expression was less extensive, with Adh 1 mRNA being found in liver and intestines. Adh 3 expression was ubiquitous in both mouse and rat embryos, suggesting a housekeeping function of the gene. Consistent with previous studies in adult rats and mice, our data suggest that Adh 3 is the only ADH class present in rodent brain. Adh and Aldh gene activity in mouse and rat embryos indicate the possible involvement of the respective enzymes in retinoid metabolism and participation in defense against toxic insults, including those that may be involved in the pathogenesis of PD.
    [Abstract] [Full Text] [Related] [New Search]