These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Osmotic agents hamper mesothelial repopulation as seen in the doughnut in vivo model.
    Author: Gotloib L, Wajsbrot V, Shostak A.
    Journal: Perit Dial Int; 2005 Feb; 25 Suppl 3():S26-30. PubMed ID: 16048251.
    Abstract:
    BACKGROUND: The problem of mesothelial cell injury derived from the use of peritoneal dialysis solutions has been explored deeply. Conversely, the eventual detrimental effects upon mesothelial cell regeneration have awaked less investigative efforts than those focused on injury. OBJECTIVE: To evaluate in the in vivo and in situ rat "doughnut" model of mesothelial repopulation, the eventual effect of peritoneal lavage with Hank's Balanced Salt Solution (HBSS) as well as that of 4.25% glucose and 7.5% icodextrin dialysis solutions. EXPERIMENTAL ANIMALS: 100 Sprague-Dawley albino rats were included in the study. Animals were divided into five groups of 20 rats each: group 1: control at zero time; group 2: sham-injected rats; group 3: rats exposed to HBSS; group 4: rats treated with 4.25% glucose peritoneal dialysis solution; group 5: rats injected with 7.5% icodextrin. METHODS: Selective exfoliation of a ring of mesothelium (width 0.8 mm, diameter 4 mm) covering the anterior surface of the liver was performed in 80 animals. The control zero-time group was used to evaluate the normal density distribution of the mesothelial cells forming the monolayer. The other groups were treated by means of daily sham injections or intraperitoneal infusion of each experimental solution for a period of 30 consecutive days. After a recovery period of 15 days, imprints and biopsies from the monolayer covering the exfoliated area were taken and processed for light microscopy. RESULTS: Macroscopic observation of the abdominal cavity at the end of the 15-day recovery period showed that the prevalence of fibrotic adhesions between the peritoneal exfoliated area and the neighboring diaphragm was 10% forthe sham-injected group, 5% for the HBSS-exposed animals, 85% for the rats injected with 4.25% glucose, and 95% for the icodextrin-treated group. Prevalence of fibrous adhesions in sham-injected animals and rats exposed to HBSS were devoid of statistically significant differences. Conversely, comparison of these groups with results observed in animals treated with the osmotic agents was significant, at the p < 0.0039 level. Regarding density distribution of mesothelial cells observed in imprints, there were no significant differences between the control zero-time and the sham-injected group. This parameter was marginally lower (p < 0.05) in the HBSS-treated rats. Imprints were not taken from animals exposed to glucose or icodextrin because a dense layer of connective tissue replaced the exfoliated mesothelial area. CONCLUSIONS: Observations made in this study support the contention that both osmotic agents, 4.25% glucose and 7.5% icodextrin, substantially restrain the normal process of mesothelial cell repopulation and induce repair by means of connective tissue. The underlying mechanism is most likely sustained oxidative stress.
    [Abstract] [Full Text] [Related] [New Search]