These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An experimental and theoretical study of stereoselectivity of furan-maleic anhydride and furan-maleimide diels-alder reactions. Author: Rulísek L, Sebek P, Havlas Z, Hrabal R, Capek P, Svatos A. Journal: J Org Chem; 2005 Aug 05; 70(16):6295-302. PubMed ID: 16050690. Abstract: The stereoselectivity of the reaction of furan (1) with maleic anhydride (2) and maleimide (3) was studied experimentally and theoretically. Although the two reactions are highly similar with regard to their preference for endo and exo steroisomers, notable differences were experimentally observed and explained on the basis of calculated reaction-free energies and transition-state barriers. The experimental values of rate constants (k(1+2endo) = (1.75 +/- 0.48) x 10(-5); mol(-1) l s(-1); k(1+2exo) = (3.10 +/- 0.55) x 10(-5); mol(-1) l s(-1); k(1+3endo) = (1.93 +/- 0.082) x 10(-5); mol(-1) l s(-1), k(1+3exo) = (1.38 +/- 0.055) x 10(-5); mol(-1) l s(-1) all at 300 K) and the observed reaction course clearly confirm that neither of these reactions are prototypical examples of Diels-Alder [4 + 2] cycloadditions, whose dominant preference is for endo isomers. However, only by comparing their energetics-calculated at the CCSD(T) level of theory-with the analogous reactions involving cyclopentadiene (8) as a diene can these observations be understood. The low thermodynamic stability of furan [4 + 2] adducts opens retro-Diels-Alder reaction channels and overrules the very small kinetic preference (calculated and measured here) of initial formation for endo stereoisomers. On a macroscopic scale "an irregular"-thermodynamically more stable-exo stereoisomer was consequently observed as a dominant species.[Abstract] [Full Text] [Related] [New Search]