These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of long-term exposure, biogenic substrate presence, and electron acceptor conditions on the biodegradation of multiple substituted benzoates and phenolates.
    Author: Hu Z, Ferraina RA, Ericson JF, Smets BF.
    Journal: Water Res; 2005 Sep; 39(15):3501-10. PubMed ID: 16051311.
    Abstract:
    Biodegradation rates of benzoate and related aromatic compounds, 3-nitrobenzoate, 4-chlorobenzoate, 4-chlorophenol, and 2,4-dichlorophenol by unexposed (unacclimated) and long-term exposed (acclimated) biomass were quantified using a modified fed-batch technique. The acclimated biomass was taken after approximately 1-year of operation from three lab-scale sequencing batch reactors (SBR). These reactors were operated under various cycling electron acceptor conditions with a continuous feed of a synthetic wastewater containing biogenic and nonbiogenic chemicals including benzoate, 3-nitrobenzoate, and 4-chlorophenol, but not 4-chlorobenzoate or 2,4-dichlorophenol. The unexposed biomass was taken from a full-scale wastewater treatment plant, which constituted one of the original sources of inoculum for the lab-scale SBRs. The acclimated biomass manifested high removal rates of benzoate and related aromatic compounds with additional removal of structurally similar chemicals (4-chlorobenzoate and 2,4-dichlorophenol). The unacclimated biomass showed no removal of 3-nitrobenzoate, 4-chlorobenzoate or 2,4-dichlorophenol. Addition of biogenic substrates reduced the degradation of most aromatic compounds tested, but it enhanced 2,4-dichlorophenol removal. Biodegradation rates of each aromatic compound with the biomass from the anoxic/aerobic SBR were further determined under anaerobic (absence of aeration and NO3-), anoxic (no aeration, but with surplus NO3-), standard oxygen (DO > 0.2 mg/L), and elevated oxygen (DO > 25 mg/L) conditions. The removal rate of both benzoate and 3-nitrobenzoate decreased under anaerobic condition but not under the anoxic condition; 4-chlorophenol biodegradation, on the other hand, was reduced significantly under both anoxic and anaerobic conditions. The removal rates of aromatic compounds, particularly those of 3-nitrobenzoate and 2,4-dichlorophenol, increased significantly under elevated dissolved oxygen conditions. Our results demonstrated that when the biochemical conditions shifted from oxygen-respiration to nitrate respiration, to anaerobiosis, the biodegradation rates of test aromatic compounds decreased or ceased.
    [Abstract] [Full Text] [Related] [New Search]