These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of breast cancer cell growth and induction of cell death by 1,1-bis(3'-indolyl)methane (DIM) and 5,5'-dibromoDIM. Author: Vanderlaag K, Samudio I, Burghardt R, Barhoumi R, Safe S. Journal: Cancer Lett; 2006 May 18; 236(2):198-212. PubMed ID: 16051428. Abstract: 1,1-Bis(3'-indolyl)methane (DIM) and the 5,5'-dibromo ring substituted DIM (5,5'-diBrDIM) inhibited growth of MCF-7 and MDA-MB-231 breast cancer cells, and IC50 values were 10-20 and 1-5 microM, respectively, in both cell lines. DIM and 5,5'-diBrDIM did not induce p21 or p27 protein levels or alter expression of Sp1 or Sp3 proteins in either cell line. In contrast, 10 microM 5,5'-diBrDIM downregulated cyclin D1 protein in MCF-7 and MDA-MB-231 cells 12 and 24 h after treatment. DIM (20 microM) also decreased cyclin D1 in MCF-7 (24 h) and MDA-MB-231 (12 h), and the DIM/5,5'-diBrDIM-induced degradation of cyclin D1 was blocked by the proteasome inhibitor MG132. Both DIM and 5,5'-diBrDIM induced apoptosis in MCF-7 cells and this was accompanied by decreased Bcl-2, release of mitochondrial cytochrome c, and decreased mitochondrial membrane potential as determined by the red/green fluorescence of JC-1. DIM and 5,5'-diBrDIM induced extensive necrosis in MDA-MB-231 cells; however, this was accompanied by decreased mitochondrial membrane potential primarily in cells treated with 5,5'-diBrDIM but not DIM. Thus, DIM and 5,5'-diBrDIM induce cell death in MCF-7 and MDA-MB-231 cells by overlapping and different pathways, and the ring-substituted DIM represents a novel class of uncharged mitochondrial poisons that inhibit breast cancer cell and tumor growth.[Abstract] [Full Text] [Related] [New Search]