These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs.
    Author: Blakqori G, Weber F.
    Journal: J Virol; 2005 Aug; 79(16):10420-8. PubMed ID: 16051834.
    Abstract:
    La Crosse virus (LACV) belongs to the Bunyaviridae family and causes severe encephalitis in children. It has a negative-sense RNA genome which consists of the three segments L, M, and S. We successfully rescued LACV by transfection of just three plasmids, using a system which was previously established for Bunyamwera virus (Lowen et al., Virology 330:493-500, 2004). These cDNA plasmids represent the three viral RNA segments in the antigenomic orientation, transcribed intracellularly by the T7 RNA polymerase and with the 3' ends trimmed by the hepatitis delta virus ribozyme. As has been shown for Bunyamwera virus, the antigenomic plasmids could serve both as donors for the antigenomic RNA and as support plasmids to provide small amounts of viral proteins for RNA encapsidation and particle formation. In contrast to other rescue systems, however, transfection of additional support plasmids completely abrogated the rescue, indicating that LACV is highly sensitive to overexpression of viral proteins. The BSR-T7/5 cell line, which constitutively expresses T7 RNA polymerase, allowed efficient rescue of LACV, generating approximately 10(8) infectious viruses per milliliter. The utility of this system was demonstrated by the generation of a wild-type virus containing a genetic marker (rLACV) and of a mutant with a deleted NSs gene on the S segment (rLACVdelNSs). The NSs-expressing rLACV formed clear plaques, displayed an efficient host cell shutoff, and was strongly proapoptotic. The rLACVdelNSs mutant, by contrast, exhibited a turbid-plaque phenotype and a less-pronounced shutoff and induced little apoptosis. Nevertheless, both viruses grew in Vero cells to similar titers. Our reverse genetics system now enables us to manipulate the genome of LACV in order to characterize its virulence factors and to develop potential vaccine candidates.
    [Abstract] [Full Text] [Related] [New Search]