These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anion recognition by neutral macrocyclic amides.
    Author: Chmielewski MJ, Jurczak J.
    Journal: Chemistry; 2005 Oct 07; 11(20):6080-94. PubMed ID: 16052653.
    Abstract:
    Although amides often serve as anchoring groups in natural and synthetic anion receptors, the structure-affinity relationship studies of amide-based macrocyclic receptors are still very limited. Therefore, we decided to investigate the influence of the size of the macroring on the strength and selectivity of anion binding by uncharged, amide-based receptors. With this aim, we synthesized a series of macrocyclic tetraamides derived from 2,6-pyridinedicarboxylic acid and aliphatic alpha,omega-diamines of different lengths. X-ray analysis shows that all ligands studied adopt expanded conformations in the solid state with the convergent arrangement of all four hydrogen-bond donors. 1H NMR titrations in DMSO solution revealed a significant effect of the ring size on the stability constants of anion complexes; the 20-membered macrocyclic tetraamide 2 is a better anion receptor than its both 18- and 24-membered analogues. This effect cannot be interpreted exclusively in terms of matching between anion diameter and the size of macrocyclic cavity, because 2 forms the most stable complexes with all anions studied, irrespective of their sizes. However, geometric complementarity manifests in extraordinarily high affinity of 2 towards the chloride anion. The results obtained for solutions were interpreted in the light of solid-state structural studies. Taken together, these data suggest that anion binding by this family of macrocycles is governed by competitive interplay between their ability to adjust to a guest, requiring longer aliphatic spacers, and preorganization, calling for shorter spacers. The 20-membered receptor 2 is a good compromise between these factors and, therefore, it was selected as a promising leading structure for further development of anion receptors. Furthermore, the study of an open chain analogue of 2 revealed a substantial macrocyclic effect. X-ray structure of the acyclic model 14 suggests that this may be due to its ill-preorganized conformation, stabilized by two intramolecular hydrogen bonds.
    [Abstract] [Full Text] [Related] [New Search]