These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fourier transform infrared reflectance microspectroscopy study of Bacillus subtilis engineered without dipicolinic acid: the contribution of calcium dipicolinate to the mid-infrared absorbance of Bacillus subtilis endospores. Author: Perkins DL, Lovell CR, Bronk BV, Setlow B, Setlow P, Myrick ML. Journal: Appl Spectrosc; 2005 Jul; 59(7):893-6. PubMed ID: 16053560. Abstract: Mid-infrared spectra of spores of two strains of Bacillus subtilis, PS832 (wild-type) and FB122 (sleB spoVF), that are isogenic except for the two mutations in FB122 were obtained by Fourier transform infrared (FT-IR) reflectance microspectroscopy. The mutations in FB122 cause the spores of this strain to be devoid of dipicolinic acid (pyridine-2,6-dicarboxylic acid; DPA), a biomarker characteristic of bacterial spores. Analysis of these two strains by difference spectroscopy revealed a spectrum similar to that of calcium dipicolinate (CaDPA), a chelate salt of DPA. This difference spectrum was compared to mid-infrared spectra of both DPA and CaDPA, and was attributed to CaDPA only. This is the first report known to the authors of a genetically engineered organism being used to identify the spectral contribution of a particular cellular component.[Abstract] [Full Text] [Related] [New Search]